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Abstract: ChIP-seq experiments identify genome-wide profiles of DNA-binding molecules including transcription factors, enzymes
and epigenetic marks. Biological replicates are critical for reliable site discovery and are required for the deposition of data in the
ENCODE and modENCODE projects. While early reports suggested two replicates were sufficient, the widespread application of
the technique has led to emerging consensus that the technique is noisy and that increasing replication may be worthwhile.
Additional biological replicates also allow for quantitative assessment of differences between conditions. To date it has remained
controversial about how to confirm peak identification and to determine signal strength across biological replicates, particularly
when the number of replicates is greater than two. Using objective metrics, we evaluate the consistency of biological replicates in
ChIP-seq experiments with more than two replicates. We compare several approaches for binding site determination, including two
popular but disparate peak callers, CisGenome and MACS2. Here we propose read coverage as a quantitative measurement of
signal strength for estimating sample concordance. Determining binding based on genomic features, such as promoters, is also
examined. We find that increasing the number of biological replicates increases the reliability of peak identification. Critically,
binding sites with strong biological evidence may be missed if researchers rely on only two biological replicates. When more than
two replicates are performed, a simple majority rule (>50% of samples identify a peak) identifies peaks more reliably in all
biological replicates than the absolute concordance of peak identification between any two replicates, further demonstrating the
utility of increasing replicate numbers in ChIP-seq experiments.
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Introduction

The goal of chromatin immunoprecipitation (ChIP) experiments Different patterns of “peaks” will form at putative binding sites

is to map the binding sites of a molecule (usually a protein) across the after the sequence reads are aligned to a reference genome. Peaks
genome in a cell type or tissue [1]. ChIP assays start by cross-linking produced by site-specific binding of transcription factors are very
cellular interactions between DNA and the bound molecules with narrow, while peaks of specific histone modifications are more
formaldehyde. The cross-linked chromatin is sheared into small diffusive and can cover large domains of DNA across several
fragments by sonication and the DNA-protein complexes of interest nucleosomes [7-9]. These two distinct types of binding are termed as
are recovered using specific antibodies, resulting in an enrichment of point source and broad source, respectively. RNA polymerase II is an

DNA fragments that were bound by the protein of interest. The

cross-linking is then reversed and DNA fragments are released from

example of mixed source factors, which can form both highly

localized and spreading peaks at different genome positions [10,11].
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the binding complex to be assayed. Usually there is a PCR
amplification step to increase the amount of starting DNA. The first
genome-wide ChIP studies used microarray (ChIP-chip) to analyze
the DNA fragments [2,3], which can now be sequenced directly
(ChIP-seq) using massive parallel sequencing [4-6].
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In addition to sequences truly associated with the molecule of
interest, random background noise is also present due to non-specific
binding or biases in library construction and sequencing [12] [13-16].
Peak placement depends upon the background in each independent
experiment. The use of control samples may mitigate these biases but
cannot eliminate all sources of noise. Replication is necessary to
separate actual biological events from variability resulting from
random chance [10,18]. Technical replication measures a single
biological sample repeatedly and allows estimation of the variability in
the sequencing process. Biological replication measures multiple
biological samples independently and enables inferences about the
biological activity of the broader population where the samples are
drawn. Biological replicates and their advantage over technical
replicates have been well described in the context of gene expression
studies such as microarrays (e.g. [19-22]) and mass spectrometry [23],
and more recently in RNA-seq experiments [24,25]. For ChIP-Seq
experiments, with the ease of multiplexing and the plummeting costs
of sequencing, increased sample sizes (i.e. number of replicates) are
not only more affordable but are also becoming standard practice. For
example, the ENCODE consortium requires a minimum of two

biological replicates in ChIP experiments [26].
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Table 1. Approaches to analyze replicate ChIP-seq samples.

Biological replicates in ChiP-seq

Number of samples Dependence on peak calling Information from individual replicate Examples
Pooling all replicates No limitation No limitation Lost [6,12,18,27,28]
IDR Two Optimized for peaks identified by SPP Kept [29,30]
Select one best replicate No limitation No limitation Lost [42]
Majority rule No limitation No limitation Kept [65]

There is not yet consensus on how to analyze multiple-replicate
ChIP-seq samples (Table 1). Pooling biological replicates is common
in current protocols of ChIP-seq experiments. In some cases multiple
biological samples were pooled and then divided into aliquots before
sequencing [12]. Other investigators sequenced the biological
replicates separately but pooled the sequencing data together before
proceeding to data analysis [6,18,27,28]. Pooling replicates is also
integrated into the ENCODE framework [29], where the replicates
were first analyzed separately to determine the Irreproducibility
Discovery Rate (IDR) [30],
identification of the peaks passing the IDR.

IDR combines pairs of replicates. However, IDR has many

and then pooled together for

limitations. For the bivariate model of IDR, the preliminary peaks
have to contain both high quality peaks and peaks that are most likely
to be only noise, and the algorithm is currently implemented for only
a few peak callers such as SPP [31] and MACS [32], with the caveat
that the IDR developer has not optimized for MACS and
recommends against it. However, investigators may prefer peak callers
optimized for the binding factor of interest. The more stringent peak
callers such as CisGenome [33] and QUEST [34] are not currently
configured in the IDR package. Moreover, IDR relies on the ranking
of the preliminary peaks and does not handle ties in the ranks, while
such ties are common in ChIP-seq peaks. A true signal may be
dropped by IDR when one replicate is noisier, because IDR chooses
signals with consistent ranking over the signals that rank high in one
replicate but low in the other. In this scenario, weak signals with
consistent ranking between replicates are considered more credible
than signals that were strong in one but weak in the other
(inconsistent ranking).

In genomic experiments, independent processing of biological
replicates is standard. Combined data may be unduly influenced by an
outlier sample. Detection rates are also reduced, with binding sites
with smaller signal-to-noise ratios being especially affected. However,
detection is critical in ChIP-seq experiments for investigators who
want to obtain maximal information. Another severe limitation of
analyzing a single combined sample is that it precludes downstream
quantitative comparisons across samples. Recently attention has been
drawn to analyzing individual samples separately in ChIP-seq
experiments [9,35-41]. Some groups have proposed to focus on the
analysis of one replicate, using the additional samples for
confirmation only [42]. Others have compared overlapping peaks
from biological replicates for transcription factor occupancy [41,43],
ChIP-seq quality control [44], and study of cell cycle phases [45].
Sull, there is no consensus about how to leverage information
provided by biological replicates.

In this study, we analyzed five ChIP-seq experiments with three or
more replicates. Multiple methods for defining the consensus peaks
using biological replicates were considered in order to minimize
variability and maximize consistency. We confirm results from
genomic studies and conclude that more than two biological replicates
are essential for ChIP-seq experiments. We propose using a simple
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majority rule for peak identification and show that this yields more
reliable peaks than absolute concordance with fewer replicates.

Methods

Data
We used five ChIP-seq data sets for this study. Two are

previously unpublished and created in our labs. The raw data (fastq

files) of the other three were downloaded from Gene Expression

Omnibus (GEO).

a) RNA Polymerase II ChIP-seq in Drosophila melanogaster with
three replicates, and one input DNA control (GEO accession:
GSE36107).

b) Transcription factor NFKB ChIP-seq [46] (GEO accession:
GSE19485> in human Iymphoblastoid cell line GM10847. The

cells were stimulated with TNF-a to activate NFKB regulation.
This experiment consisted of five biological replicates and two
IgG control samples.

c) FOXA1 ChIP-seq in mouse liver with five biological replicates
and three input control samples [47,48] (GEO accession:
GSE25836 and GSE33660).

d) H3K4me3 ChIP-seq in Drosophila melanogaster with three

three

biological ~ replicates and control

(unpublished).
e) H3K27me3 ChlIP-seq in mouse ganglia with three biological

replicates, and no input control (unpublished)

input samples

Analysis

Biological replicates from each dataset were individually processed
and underwent three levels of quality control (Figure 1). The fastq
tiles were mapped to the genome (FlyBase 5.30 for drosophila, mm9
for mouse, and hg19 for human) using Bowtie [49] with options —m
1 —best —strata. Aligned reads were visualized in Integrative Genomics
Viewer (Broad Institute) [50,51] to check the overall read
distribution shape and signal strength of the factor and the control at
individual loci. Although not a quantitative metric, visible enrichment
at known binding regions are expected in a successful ChIP-seq
experiment. The PCR bottleneck coefficient (PBC) was calculated to
measure approximate library complexity by taking the ratio of non-
redundant uniquely mapped reads over all uniquely mapped reads. All
the quality metrics based on the reads themselves and the initial
alignments are QC1.

Peak identification from noisy ChIP-seq data is a challenging
process, for which over 30 programs have been developed (for a
review see [17]). In this study, we used two of the most popular peak
callers, MACS2 [32] and CisGenome [33], which were found to
perform better than other peak callers [12,30]. These two algorithms
are also representative of statistical models used for peak finding:
MACS uses a dynamic Poisson distribution, while CisGenome uses a
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negative binomial distribution to account for the local biases across
the genome.

Both programs were run with default settings with the input
DNA samples as the control (except the H3K27me3 dataset for
which the input control is unavailable). Notably, the default setting of
MACS2 removes duplicate tags at the same location (—keep-
dup=auto) and report peaks with FDR <0.05 (-q 0.05), while
CisGenome does not automatically remove duplicates by default, and
the cutoff for peak identification is a fold of enrichment >3 (-¢=3.0)
when a input control is used and >10 (-c=10) when the ChIP sample

is analyzed alone.
Bowtie

CisGenome
or MACS

Script finding overlaps

Qc1

b
Qc3

Figure 1. Analysis pipeline for ChIP-seq experiments. Each biological
replicate is individually aligned to the appropriate reference (Aln), Peaks
are identified (e.g. CisGenome or MACS). Quality control 1 (QC1) includes
visual examination in a genome browser and quantification of total reads,
uniquely mapped reads, and PCR bottleneck coefficient (PBC). Quality
control 2 (QC2) includes evaluation of the number of peaks, the fraction of
reads in peaks (FRIP), phantom peaks and common and unique peaks.
Consensus peaks summarized from overlapping peaks with four different
criteria (described in Methods and Figure 2). Quality Control 3 (QC3)
examines correlation and agreement across replicates.

Additional settings were explored. For the H3K27me3 data, we
also present analysis results when removing duplicate tags first and
using —c=0 besides those generated by the default setting. Parameter
choices are important and investigators should spend time adjusting
the parameters in order to obtain a reasonable list of binding sites for
their factor of interest. Qur intention here is not to compare the peak
callers themselves but to use disparate peak callers with disparate
settings and diverse data to see if there are universal conclusions about
processing biological replicates that can be made.

QC2 is performed after peak identification and included
summarizing the number of peaks identified as well as metrics to
evaluate peak quality. The fraction of reads in peaks (FRIP, [33])
was calculated to estimate the global enrichment of signals against the
background. Normalized strand cross-correlation (NSC) and relative
strand cross-correlation (RSC) measure enrichment independently of
peak calling. NSC is the normalized ratio between the fragment-
length cross-correlation peak and the background cross-correlation.

RSC is the ratio between the fragment-length peak and the read-
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length  peak (http:/ / genome.ucsc.edu/ ENCODE/ qualityMetrics.
html).

For peaks independently identified from multiple replicates, it is
unlikely that the exact peak position is the same across independent
replicates. Peaks were considered overlapping among replicates if at
least one nucleotide was shared. Unique and common peaks were
identified across replicates. Peaks found only in a single replicate were
considered unique. Peaks present in all replicates were considered to
be common. The simple agreement coefficient was calculated as the
number of overlapping peaks over all peaks identified in a pair of
replicates.  McNemar’s test  [506] symmetry of

identification for unique peaks, providing a measurement of

evaluates  the

agreement between replicates.

We explored several different ways to define a consensus region
from peaks overlapping among a set of replicates with various exact
positions (Figure 2). We compared: the maximum area encompassing
identified peak regions (“MAX"); the area between the summits of
overlapping peaks (“SMT”); the area encompassing the known
footprint size for a specific binding molecule centered at the average
summit (“ASF”), or using an empirical observation of average peak
width to determine the boundaries again centered at the average
summit (“ASW”). If peaks were identified only in a subset of
replicates, the consensus peaks were determined from the subset where
individual peaks had been identified. For each of these approaches,
the coverage in consensus peaks was calculated as the Reads Per
Kilobase per Million mapped reads (RPKM, [52]) for each sample.
QC3 was developed to quantitatively evaluate the agreement across
replicates. Consistency between pairs of replicates was explored using
weighted Kappa coefficients [53] of ranked coverage (groups=>5) and
Spearman’s correlation. Bland-Altman plots were also used to visually
examine differences between the two replicates plotted against their
mean [54,55].

In many cases peaks were present in all replicates, but there are
also cases where peaks were only identified in a subset of replicates.
We proposed a “simple majority” rule and considered a peak
identification to be consensus if it was detected in a majority of
replicates, based on the reasoning that (1) if peak detection were
random the likelihood of seeing a peak in the same location in
multiple replicates would be small, and (2) given the noisy nature of
ChIP-seq sampies, a particular tool’s chance of not identifying a Peak
in a region (false negative) is known to be large (Supplemental Figure
7). As the sample size of a ChIP-seq experiment increases, requiring
an absolute consensus (100% agreement) will increase the false
negative rate substantially. The majority rule allows for the simple
extension of consensus between two replicates (the guideline proposed
by [26]), to more complex situations. A majority consensus peak is
supported by the majority of samples, allowing possible dissent in the
other replicates. Naturally, this introduces the question of reliability
of the peaks that have not been called unanimously. To determine
whether the missing peak in some of the replicates was due to the lack
of reads or merely a potential false negative from the peak discovery
software, we tested for evidence that reads were enriched in the
replicates where the software failed to identify them initially. For each
sample, we used the peaks identified in that sample to estimate the
distribution of RPKM values for peaks in that particular sample.
RPKM values for peaks less than the 25" percentile were considered
the background. We used a Z-test where the null hypothesis is that its
RPKM was not greater than the background. The peak was
considered to be detected above background (DABG) when the null
hypothesis was rejected (i.e. RPKM of the peak was greater than the
25" percentile of the RPKM of all peaks of that sample).
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Figure 2. Defining the consensus regions for overlapping peaks across replicates. (A). Scheme showing different methods of combining individual peaks into a
consensus. MAX: the maximum area encompassing all peak regions. SMT: the area between the summits of peaks. Summits of individual peaks are marked in
red. The average summit of individual peaks is shown as the star. ASF: the area in the size of the footprint of the bound protein with the average summit as the
center. ASW: the area centering the average summit in the size of the average peak width. (B) Snapshot of signals (grey bar charts on top), algorithmically
identified peaks (black) and the consensus regions (blue) for point source factors that form narrow peaks at the transcription start site (TSS). The ChIP signals
are distinct compared to the input control. The outlooks of the signals are highly similar for all five replicates when the signal range is not set but allows auto-
adjustment to the local background (not shown). Here the range is set to a constant to allow comparison of the relative signal strengths, which vary across
samples. The peaks identified in individual samples are similar in their position and width. (C) Snapshot for broad source factors whose binding signals span an
entire gene (cropped at the 3’ end for readability). There are bigger differences in the identified peaks across replicates.

The Gene Feature Format (GFF) file containing the genomic
annotation of D). melanogaster was downloaded from:
fep: // fep.flybase.net / genomes / Drosophila_melanogaster/ dmel_r5.3
0_FB2010_07/.

The promoters were defined as +/-2kb from the TSSs. The genic
regions were taken as the upstream 2kb from the TSSs until the
downstream 2kb from the transcript terminate sites (TTSs).
Agreement between the RPKM of pairs of replicates was inspected
using Bland-Altman plots for both promoters and genic regions.

“ Results

QC1 and QC2 show variability among biological replicates of
ChIP-seq experiments
For all of the experiments we examined, the read level QC1

showed that the sequencing depth and quality varied among replicates
(Supplemental Table 1 and 2). Sufficient numbers of total reads and
uniquely mapped reads were necessary for binding site discovery. The
RNAPII data met the rule of thumb promoted for the minimal
mapped reads per sample, which is 2 million for drosophila, and 10
million for mammalian genome [26]. Under this rule the FOXA1 and
NEKB experiments appeared to lack sequencing depth. The first
replicate of the H3K4me3 data had much fewer reads compared to
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the other replicates. Consistent with their biological functions, the
binding signals of RNAPII and H3K4me3 were associated with genic
regions with more prominent peaks near the transcription start sites
(TSSs) (Supplemental Figure 1). Clear and narrow peaks were found
at the TSSs of known NFKB targets such as TP53 [57,58], NFKBIA
[59,60], NFKB1 [61] (Supplemental Figure 1) and SHH [62].

QC2 revealed that the numbers of peaks independently identified
were different for replicates of the same experiment (Supplemental
Table 1) and the difference between peak calling programs was
evident. The performance of same parameter settings depended upon
the particular experiment, and there was not an immediately
transparent mapping between the two underlying models of MACS2
and CisGenome. Using default settings, MACS2 [32] identified more
peaks in the RNAPII data while CisGenome [33] identified more in
other datasets. CisGenome peaks were also wider, especially for the
NEKB data. Multiple consecutive peaks identified by MACS2 in
RINAPII were frequently identified as a single peak by CisGenome
(Supplemental Figure 1). The fraction of reads in peaks (FRIP)
varied corresponding to the number of peaks being identified
(Supplemental Table 1). Parameter exploration demonstrated the
differences between MACS2 and CisGenome in the default settings
beyond the underlying statistical models (Poisson vs. negative
binomial). For example, the plentiful redundant reads in low PBC
samples have to be removed deliberately for CisGenome but are
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automatically removed in MACS2. When this step was repressed in
MACS2 by the --keep-dup option, the number of peaks became
comparable to that identified by CisGenome for RNAPII and NFKB
(data not shown). When redundant reads were removed, the number
of peaks identified by CisGenome and the FRIP dropped noticeably
and was closer to that of the default settings in MACS2
(Supplementary Table 3; Supplementary Table 4). Peak-independent
measurements of enrichment such as Normalized strand cross-
correlation (NSC) and relative strand cross-correlation (RSC)
suggested three of the NFKB replicates were of medium quality, and
the remaining samples were of high or very high quality
(Supplemental Table 2).

QC2: Proportion of common and unique peaks reflects the
reproducibility of replicates

Without prohibitively costly independent validation experiments,
the rate of false positive and false negative peaks cannot be accurately
estimated. However, consistency of replicates provides a proxy for
such an estimate, as the general assumption is that peaks identified in
multiple samples, in approximately the same region, represent the
same protein/DNA binding phenomenon. As showed by the peak
level QC2, despite discrepancies in the number of peaks identified by
CisGenome and MACS2 in individual replicates, the numbers of
common peaks were more comparable between the two programs

(Table 2; Supplemental Table 3).

Table 2. Numbers of common peaks. Common in all replicates:
a peak was counted when it has overlapping peaks in each of the
replicates. Common in the majority: a peak was counted when it
has overlapping peaks in more than 50% of the replicates (i.e.
three out of five, two out of three, etc).

Program (using Common in Common in the

default settings)  all replicates majority of replicates

CisGenome 1,391 2,278
RNAPIL

MACS2 1,874 3,569

CisGenome 5 439
FOXA1

MACS2 3 28

CisGenome 113 432
NFKB

MACS2 62 781

CisGenome 160 3,288
H3K4me3

MACS2 53 154

CisGenome 29,989 80,284
H3K27me3

MACS2 7,709 17,039

The proportion of overlapping peaks between a pair of replicates
reflects sample agreement, which was fair for the RNAPII and NFKB
data (Supplemental Table 3a). The agreement was reasonable for the
H3K27me3 data when MACS or adjusted CisGenome was used, but
decreased when the peaks were identified using the default settings of
CisGenome (Supplemental Table 3a). For H3K27me3 dataset, we
focused on the results from adjusted instead of the default settings of
CisGenome. Similarly, the default CisGenome also did not perform
well for the H3K4me3 data. This was probably because CisGenome,
unlike MACS2, was not optimized for histone signals (broad peaks).
The FOXALI data also had few reproducible peaks across replicates.
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Compared to the other datasets, the FOXA1 data appeared noisier in
the genome browser and we were not able to observe noticeable peaks
near known selected FOXA1 target genes. The metric we proposed
(proportion of overlapping peaks) and the existing metrics
(sequencing and mapped reads) all suggest high background noise in
these data. The researchers in the original report combined the five
replicates into one sample prior to analysis.

Generally, the number of peaks increases with the number of
sequence reads for both CisGenome and MACS2 (Supplemental
Table 1), consistent with previous studies [10]. McNemar’s test [56]
demonstrates that the unique peaks do not match for a given pair of
replicates, with more peaks being identified in samples with greater
sequencing depth (Supplemental Table 3b). However, this pattern
was not strictly followed by the samples with high PCR bottleneck
coefficient values (PBC>0.7).

QC3: Consensus peaks and quantitative estimates of peak
intensity

Read coverage within specific peaks provides a quantitative
measurement of enrichment above background. We calculated the
Reads Per Kilobase per Million mapped reads (RPKM, [52]) in the
consensus regions for common peaks (deﬁned in Methods), Because
differently defined consensus regions mostly varied in width (Figure
2), the choice of consensus region affected read coverage and in turn
the estimate of sample agreement, though this effect was small (Figure
3; Supplemental Figure 2). ASF consensus peaks had relatively lower
agreement across replicates, indicating that ASF is not a good choice
of consensus despite its usage of biological knowledge of a protein’s
footprint size. It has been reported that although factors bind short
regions of DNA (typically 5-25 bp), the DNA fragments that are
pulled down typically cover a wider region of 150-600 bp around the
binding site [13]. Therefore the width of identified peak regions does
not always reflect the actual resolution of biological binding size. We
also examined the enrichment in the corresponding regions of peaks
identified in the replicate with the most reads. This is comparable
with other ChIP-seq studies that arbitrarily selected one replicate as
the reference sample (e.g. [42]). Unsurprisingly, such “consensus”
peaks were heavily biased towards the sample that was selected as the
standard (Supplemental Figure 2).

For RNAPII and NFKB, CisGenome called fewer peaks that had
higher agreement across replicates (Supplemental Figure 3: BA plots
with a narrower Y-axis where points are symmetrical around O, higher
Kappa and Spearman’s coefficient), indicating these peaks were of
higher quality. These peaks were also wider, including more reads that
covered broader regions. In the H3K4me3 data, MACS2 identified
fewer but higher quality peaks compared to CisGenome. The first
replicate of H3K4me3 data was less correlated with the other
replicates (Supplemental Figure 4), possibly an outlier, which was
hinted by its lower read counts. The adjusted CisGenome and
MACS?2 yielded comparable Kappa and Spearman’s coefficients for
the H3K27me3 data. However, the distribution of the BA plots
indicated that CisGenome peaks have better agreement (Supplemental
Figure 6).

Despite the difference in the number of identified peaks, the
RINAPIIL, NFKB and H3K27me3 replicates were highly correlated in
terms of signal quantification (Figure 3; Supplemental Figure S;
Supplemental Figure 6). QC based on sequencing depth (QC1) and
peak calling results (QC2) may identify the third replicate of NFKB
experiment as failed; however, when measured quantitatively (QC3), it

actually had good agreement with other samples (Supplemental Figure
3).
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Figure 3. Consistency across replicates of the RNAPII ChIP-seq experiment. (A) Boxplot of weighted Kappa coefficients. The coverage in the consensus peak
was binned into five ranked groups. The agreement of such ranked coverage between replicates was reflected by the weighted Kappa coefficients. A value over
0.75 indicates excellent agreement, which was met for all replicates regardless of the consensus being used. (B) Heat map of the Spearman correlation of the
coverage in the consensus peak. Correlations were high. (C) Bland-Altman plots show the relationship between the difference (Y axis) and the mean (X axis) for
a pair of replicates. Narrow and symmetrical plots reflect better agreement. Replicate 2 and replicate 3 are shown here, but other pairs (Replicate 1 vs
Replicate 2, Replicate 1 vs Replicate 3) have similar patterns. Data shown are based on CisGenome peaks and more information is in Supplemental Figure 3.
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Figure 4. Percentages of peaks detected above background (DABG) in
replicates where no algorithmically identified peaks were present. The
read coverage (RPKM) in each identified peak, unique or common, was
compared to the lower quartile of coverage in all peaks for that sample.
The peak was detectable if the difference was statistically significant by a Z
test. Peaks that were identified in the majority of replicates had a higher
ratio to be confirmed by DAGB compared to those were unique in one
replicate (Supplemental Table 3. The Y axis is the percentage of the peaks
DABG and the mean is indicated by the sold line while the whiskers are
the 25 and 75 percentile values.
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Spearman’s correlation using peaks identified
in different numbers of replicates of RNAPII
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Figure 5. Spearman correlation coefficients were similar when the peaks
were identified in all replicates or in the majority of the replicates.
However, the correlation was much lower for uniquely identified peaks.
The Y axis is the correlation coefficient and the mean is indicated by the
sold line while the whiskers are the 25 and 75 percentile values.
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Figure 6. Bland-Altman plots showing the sample agreement, using genomic features as the quantification unit. The difference (Y axis) between a pair of
replicates at the genomic feature (transcript for RNAPII [A] and TSS for H3K4me3 [B]) was plotted against the average of two samples. (A) Enrichment in the
transcripts showed agreement for all replicates of the RNAPII data. (B) The first replicate of H3K4m3 appears to be an outlier sample, with little agreement with
other replicates, while the second and third replicates agreed with each other in their enrichment near the TSS.

Peaks identified in the majority of replicates are reliable

Due to the noisy nature of ChIP experiments and limitations of
peak calling programs, peak identification varies across samples.
Requiring support from all replicates for common peaks is likely to
increase the false negative rate. We hypothesized that if a peak was
identified in more than 50% of the replicates (i.e. two out of three,
three out of five) there is sufficient support for its existence. More
peaks were included as common under this majority rule (Table 2
“Common in the majority”). We tested whether the failure to identify
a peak in some replicates is likely to be a false negative or whether
there is no enrichment of binding in that area for that replicate. The
probability of detection above background (DABG) was used to
determine whether the observed signal in the putative peak region was
greater than the first quartile of detected peaks in that sample (Z test
p<0.05, see Methods). Visual inspection using the genome browser
found clear peaks at the TSS of known NFKB targets such as TP53
[57,58], NFKBIA [59,60], NFKB1 [61] and SHH [62], though
these peaks were not identified in all replicates by CisGenome or
MACS?2 (Supplemental Figure 1). In addition, there were also distinct
increases of signal near the TSS of BRCA2 and PTEN, both of
which are known targets of NFKB [63,64] but were not identified as
peaks (Supplemental Figure 7). The absence of peaks identified at
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these regions may be the result of insufficient coverage or excessive
noise at these genome positions.

Compared to the absolute consensus, more peaks were included as
common under the majority rule (Table 2 “Common in the
majority”). For the RNAPII data, peaks that were identified in the
majority of replicates had a high confirmation rate using the test for
detection above background (DABG) particularly when compared to
tests for DABG for unique peaks, regardless the peak caller used or
the consensus definition (Figure 4; Supplemental Table 4). Similarly
in the H3K27me3 data, the DABG was 55% - 58% in the other
replicates for the peaks identified solely in the third replicate, but
increased to 81% - 85% when the peaks were also identified in an
additional replicate. More than 92% of unique peaks in NFKB'’s first
replicate were also supported by other replicates. This suggests that
many genuine signals were missed by the peak callers. Consistent with
the QCI and QC2, peaks identified only in the third and fourth
replicates of the NFKB data, were significantly above background
only in 11% and 25% of the other replicates. When the majority rule
was used, 100% of the peaks were also identified by DABG in the
DABG thus enables additional quality

assessments, and an objective measure of whether peaks identified by

additional two replicates.

the majority rule have supporting evidence in all replicates.
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Spearman’s correlation between pairs of replicates was high, as
expected, when using peaks that were identified by the peak callers in
all replicates. The correlation was only slightly lower when the peaks
that were identified in the majority were also included (Figure §
showing RNAPII; Supplemental Table 6). However, when only one
replicate was required for peak identification, the correlation in
enrichment among replicates dropped dramatically (Figure 5 showing
RNAPII; Supplemental Table 6), indicating that peaks identified in
the majority of replicates were comparable to the common peaks,
both of which were much more reliable than those identified in one
replicate.

Genomic features provide an alternative to algorithmically

identified peaks

The performance of different methods for determining consensus
peaks was dependent upon the mode of molecular binding, data
quality and peak caller used. For the data we examined, MAX, SMT
and ASW consensus peaks yielded a high estimate of consistency for
point and mixed source factors. It was less conclusive for the broad
source factors. Genomic features may serve as a reasonable alternative
as quantification unit for well annotated genomes. For example, based
on the biology that H3K4me3 marks are associated with TSSs,
sample consistency can be inferred by inspecting the read coverage at
TSSs. Even for factors whose functions are less defined, the regulation
of many proteins are gene centric, therefore the binding strength in
the nearby genic regions may provide a measure of the biological
activity.

We calculated the coverage in the surrounding regions of TSS for
the H3K4me3 data and coverage in the transcripts for the RNAPII
data. Enrichment in the TSS surrounding regions was in good
agreement for the second and third replicates of the H3K4me3 data
(Figure 6). Consistent with other measures, the first replicate of
H3K4me3 seems to be an outlier sample. The enrichment in the
transcripts was in good agreement for all replicates of the RNAPII
data (Figure 6).

Discussion

Noise may be introduced during many steps of ChIP. Some may
be technical issues in IP, library construction, or sequencing. Other
noise may be due to biological differences among individual samples.
As the tissue specificity of transcription factor binding and DNA
modification has been demonstrated by the ENCODE project, we
also expect that the tissue samples are more heterogeneous than the
cell lines, which may be more heterogeneous than prokaryotes. The
noise makes peak identification from ChIP-seq data a challenging task
and demands some guidelines for considering all the sources of
variability. Towards this end, we analyzed three publically available
ChIP-seq data, and two of our own datasets with three or more
biological replicates. Consistent with expression profiling techniques,
we find that more replicates produce results that can be quantitatively
as well as qualitatively evalauted. We propose that ChIP experiments
should include at least three replicates and use the consensus peaks
found in a majority of samples. Peaks common in all samples and
peaks unique to a single sample can be used as an indicator of
individual sample quality. Deeply sequenced experiments, such as the
RNAPII data in this study, had better concordance among replicates
than those with lower read counts. Encouragingly, reproducible peaks
could still be determined from those studies with lower coverage.

Quantification of the signals in the consensus regions was
consistent among replicates even when a peak was not initially
identified for a particular replicate. Despite their distinct models for

Volume No: 9, Issue: 13, €201401002

Biological replicates in ChIP-seq

peak identification, the two different programs used in this study
(CisGenome and MACS2) produced comparable quantitative
measurements of consensus peaks and led to similar conclusions about
the utility of replicates. Although we focused on default settings for
this exercise, adjusting settings on peak callers can improve the
concordance of peak identification among replicates.

The real binding sites are unknown for most ChIP studies. The
strategy that requires identification of a peak in all replicates (absolute
consensus) will exclude genuine binding sites. The failure to detect a
peak in a particular sample may be due to low coverage or high
background at a particular peak position, in combination with the
uncertainty in peak calling algorithms. A practical approach to
maximize site discovery is to increase the number of replicates. We
showed that peaks that were identified in the majority of replicates
were likely to be enriched above background in the replicates where
the initial peak calling process had failed. When more than two
replicates were examined, many peaks that would be considered
ungiue in the pair of replicates were confirmed in an additional
replicate. Peaks identified in the majority (>50%) of replicates were
frequently confirmed in the missing replicates when they were
specifically tested for detection among background, while the
confirmation rate for unique peaks were much lower, suggesting these
majority peaks were more likely to be true positives. Equally
importantly, no single replicates were the source of most discrepancies
and so the inclusion of more replicates improved the number and
quality of peaks for all replicates. The majority rule may be applied to
other IP-seq studies. Twice as many microRINA binding sites were
identified from two out of three replicates than from all three
replicates using high-throughput sequencing of RNA isolated by
crosslinking immunoprecipitation (HITS-CLIP) technology [65].

Real target sites may not recur uniformly across replicates above
background as defined by a particular peak discovery algorithm.
Annotation-based  approaches provide quantification that s
independent of peak calling. They are complementary to peak
identification for promoter/ transcript-associated protein binding, or
can be employed when peak calling is difficult. Notably, they cannot
replace peak callers, as many binding sites would be missed, as it has
been demonstrated by previous ChIP experiments that transcription
factors, even transcription activators such as STAT1[6] and E2F1
[66,67], can bind in regions of the genome previously unknown,
though the function of the binding remains unclear.

The decade-long debates on
experiments [68] and more recently RNA-seq data [69] applies to the

replication  for microarray
current discussion of ChIP-seq data. Not only is an increase in
replication sensible from a statistical point of view, allowing a
quantitative assessment of differences between groups, it enables
identification of a higher number of reliable signals out of the noisy
ChIP-seq data. The more variablity in the sample source, the more
biological replicates will be necessary. More replicates provide a shield
against undercalling, as a particular peak caller is unlikely to identify
all peaks in all replicates. In cases where a certain peak is missing in
one sample but present in other replicates, the signal in the missing
sample can be estimated from other replicates and tested for detection
above background in that replicate.
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